FORECASTING OF CRITERIA AIR POLLUTANTS’ CONCENTRATIONS WITH STATISTICAL MODELS
Utkan Özdemir, Simge Çankaya
Pages: 237-242
Published: 28 May 2015
Views: 3,261
Downloads: 739
Abstract: The adverse effects of air pollutants have become a common problem in many developed or developing countries because of the major risks to human and environmental health. Particulate matter, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead were defined as criteria air pollutants by Environmental Protection Agency (EPA) such as chronic respiratory problems, eye irritation, difficulty in breathing, and pulmonary and cardiovascular diseases, including cancers, it is significant to forecast the concentrations of pollutants. For this purpose, there are numerous statistical models such as artificial neural networks (ANN), multiple linear regressions (MLR) and Taguchi which are modeled the pollutant concentrations assessed. The Taguchi method developed by Genichi Taguchi is an effective design of experiments (DOE) approach and the impacts of several factors can be determined simultaneously with this method. ANN has also been used for predict the concentrations of pollutants depends on several input parameters such as wind direction, relative humidity, temperature, pressure. In the literature, ANN modeling studies generally compare with MLR because of the higher sensitivity of models. In this review, we investigated the statistical models that are used for forecasting air pollutant concentrations and compared the advantages, limitations and performance indicators of those models.
Keywords: statistical models, air pollution, design of experiments
Cite this article: Utkan Özdemir, Simge Çankaya. FORECASTING OF CRITERIA AIR POLLUTANTS’ CONCENTRATIONS WITH STATISTICAL MODELS. Journal of International Scientific Publications: Ecology & Safety 9, 237-242 (2015). https://www.scientific-publications.net/en/article/1000716/
Download full text
Back to the contents of the volume
© 2024 The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This permission does not cover any third party copyrighted material which may appear in the work requested.
Disclaimer: The opinions and claims presented in this article are solely those of the authors and do not necessarily reflect the views of their affiliated organizations, the publisher, editors, or reviewers.