International Scientific Publications
© 2007-2024 Science Events Ltd
Terms of Use  ·  Privacy Policy
Choose language English French Bulgarian
Conference room
Materials, Methods & Technologies 2024, 26th International Conference
15-18 August, Burgas, Bulgaria
Call for Papers

Materials, Methods & Technologies, Volume 10, 2016

Pınar Aydan Demirhan, Vedat Taşkın
Pages: 313-324
Published: 10 Jul 2016
Views: 2,212
Downloads: 523
Abstract: In last decades functionally graded materials become very popular for lots of industries such as automotive, naval, railroad, aerospace, etc. There are many papers in literature for bending, stability and vibration analysis of functionally graded plates. In this paper, bending of simply supported functionally graded square plates are studied. For functionally graded plates many shear deformation theory is offered. Various shape functions for defining displacement fields are used in these theories. In this study, several shape functions are discussed for deflection and stress distribution of functionally graded plate with sinusoidal loading. The exponential gradient form is assumed for change of material properties through thickness direction. Refined plate theory with different shape functions is used. Governing equations are derived from the principle of virtual displacements. The solution is obtained by Navier’s double trigonometric series approach. Numerical results of deflection, normal stress and shear stress are presented for thin and thick square plates.
Keywords: functionally graded plates, naviers solution, bending, stress, shear strain
Cite this article: Pınar Aydan Demirhan, Vedat Taşkın. NAVIER’S APPROACH FOR BENDING ANALYSIS OF FUNCTIONALLY GRADED SQUARE PLATES. Journal of International Scientific Publications: Materials, Methods & Technologies 10, 313-324 (2016).
Download full text

Back to the contents of the volume

By using this site you agree to our Privacy Policy and Terms of Use. We use cookies, including for analytics, personalisation, and ads.