AN APPROACH OF ESTIMATING THE PROBABILITY OF BEING GOOD FOR NEW BORROWERS
Vesela Mihova, Velizar Pavlov
Pages: 200-208
Published: 22 Aug 2017
Views: 1,750
Downloads: 307
Abstract: Statistical models are commonly used in the banking industry in order to assess the credit risk associated with the approval of people applying for certain products (loans, credit cards, etc.). Based on data from the past, these models try to predict what will happen in the future. This work has studied the causal link between the conduct of an applicant upon payment of the loan and the data that he completed at the time of application. A linear regression is used to estimate the probability of being good for new borrowers, and a scorecard is obtained from the linear model to assess new customers in the time of application.
Keywords: credit risk, modelling, scorecards, data analysis
Cite this article: Vesela Mihova, Velizar Pavlov. AN APPROACH OF ESTIMATING THE PROBABILITY OF BEING GOOD FOR NEW BORROWERS. Journal of International Scientific Publications: Economy & Business 11, 200-208 (2017). https://www.scientific-publications.net/en/article/1001518/
Back to the contents of the volume
© 2025 The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This permission does not cover any third party copyrighted material which may appear in the work requested.
Disclaimer: The Publisher and/or the editor(s) are not responsible for the statements, opinions, and data contained in any published works. These are solely the views of the individual author(s) and contributor(s). The Publisher and/or the editor(s) disclaim any liability for injury to individuals or property arising from the ideas, methods, instructions, or products mentioned in the content.