ADVANCES IN TEA PLANT BREEDING IN CHINA

Yue-Rong Liang¹, Young-Hwan Shin¹, Long-Jie Zhang², Kai-Rong Wang²* ¹Tea Research Institute, Zhejiang University, #866 Yuhangtang Road, Hangzhou 310058, China ²Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China

Abstract

China is one of the major tea producing countries in the world, which has 305.9 million hectare tea field and produces 260.9 million tons of tea annually. Improved tea cultivars played an important role in the rapid development of China tea industry. There are now 134 registered national tea cultivars in China, which are suitable for processing green tea, black tea, oolong tea, white tea, yellow tea and dark green tea. Systematic tea breeding in China has started since early 1950s, which can be divided into four stages, i.e., high yield breeding stage, quality breeding stage, pest-resistance breeding stage and diversified breeding targets stage. The advances in tea breeding techniques including quality assessment, yield identification, germplasm resource innovation and molecular assistant selection also discussed in the present paper.

Keywords: Camellia sinensis, tea cultivar, quality breeding, pest-resistance, germplasm, molecular assistant selection

1. INTRODUCTION

China is the the most important tea producing countries in the world and it has 305.9 million hectare tea field and produces 260.9 million tons of tea annually, being 62.6% of global tea fields and 50.1% of global tea production volume, respectively. There are many factors leading to the rapid development of Chinese tea industry, including market demand and improvement of cultivation techniques and release of improved tea cultivars, among which improved tea cultivar played a key role. There have been now 134 registered national tea cultivars and more than 200 provincial level tea cultivars in China. These tea cultivars are suitable for processing green tea, black tea, oolong tea, white tea, yellow tea and dark green tea respectively (Li et al., 2017). Systematic tea breeding in China has started since early 1950s, which can be divided into four stages, i.e., high yield breeding stage, quality breeding stage, pest-resistance breeding stage and diversified breeding targets stage. This review summarizes the advances in tea breeding in China, and the advances in tea breeding techniques are also discussed.

2. METHODS

Published literatures regarding to tea breeding in China were searched from databases of Vip (http://qikan.cqvip.com/Qikan/Journal) and Web of Science (http://apps.webofknowledge.com) up to March 30th, 2019. The searching terms used were: "tea breeding" and "China". We retrieved all the searched papers and removed the duplicate references by Endnote. Then, we read the titles and abstracts of the remaining papers to exclude those which were not related to the researched topic. The screened papers were then classified into high yield breeding, quality breeding, pest resistance breeding and diversity breeding targets, which will be cited in the corresponding subtitles.

3. RESULTS AND DISCUSSION

3.1. Development of tea breeding in China

The early tea breeding inn China can be traced back to 2000 years ago. An ancient book "Er Ya" reads that tea plants could be classified into arbor type and frutex type, which are now usually used for

processing black tea and green tea respectively. By the Tang Dynasty (618-907 AD), tea breeding became a routine operation for tea farmers in China (Liang & Feng, 2000). The tea farmers screened the tea cultivars based on the leaf color or shoot morphological characteristics. During Song Dynasty (960-1279 AD), tea cultivars were classified into seven groups according to plant type, leaf size and sprouting time in the spring season, i.e., white leaf group, oval leaf group, small leaf group, early sprouting group, late sprouting group, arbor group and frutex group (Liang & Liu, 1990; 1994). Modern tea breeding, with characteristics of clonal tea breeding, has started since 1950s and it can be divided into four stages.

3.1.1. High yield breeding stage

During 1950s – 1970s, almost all of Chinese tea was exported to earn foreign exchange, during which the demand of Chinese tea greatly exceeded the supply. Increasing production volume was the most important for the Chinese tea industry, in which there was an urgent need for high yield tea cultivars. High yield was the key target for tea breeders and many tea cultivars with high yield potential were bred. In 1965, twenty-one tea cultivars with high yield potential were recommended to be planted in all tea areas in China, which promoted rapid development of tea production (Bai et al., 2001; Chen & Zhou, 2005). During this stage, the most popular clonal tea cultivar propagated by cuttings was 'Fudingdabaicha' originated from Fujian Province and its dry tea yield reached 3000 kg per ha (Yao et al., 2008). And the most popular sexual tea variety propagated by seeds was 'Jiukeng' originated from Zhejiang Province and its dry tea yield reached 3750 kg per ha. In 1980, tea production volume in China was 304,000 tones, being more than 5 times of that in 1950.

3.1.2. Quality breeding stage

With the continuous increase in tea output and the decrease in tea export, the domestic market for black tea was gradually saturated in China in late 1980s. Domestic tea consumers mainly consume green tea, especially high-quality green tea. There was little demand for low-grade black teas. Therefore, the targeting of tea plant breeding was shifted from high-yield breeding to high-quality breeding. The propagation by tea seeds was abandoned completely because the tea plants propagated by tea seeds were genetically separated. All the bred tea cultivars were clonal ones in this stage. In order to meet the demand of the production of famous and quality green teas, most cultivars bred in this period had the characteristics of early sprouting in spring season, high level of amino acids and medium level of tea polyphenols. From 1984 to 1998, seventy-seven national level tea cultivars were released, i.e, 30 cultivars in 1984, 22 cultivars in 1987, 24 cultivars in 1994 and one cultivar in 1998. The most famous and popular tea cultivar released during this stage was 'Longjing-43' (Li et al., 2007), which was suitable for processing famous Longjing Tea in Hangzhou. The next popular tea cultivar in this stage was 'Zhenong-113', which was suitable for processing Maofeng green tea (Xu et al., 2011).

3.1.3. Pest and disease resistance breeding stage

With the awareness of pesticide pollution harmfulness to human health, it become very important to reduce pesticide application in tea fields and to control pesticide residues in tea products. It is the most effective way to control pesticides and fungicides by breeding and planting pest resistant tea cultivars. A few tea cultivars with resistance potential to pests such as *Empoasca vitis* and diseases such as anthracnose were screened from the existing tea germplasms by intrapopulation selection procedure. Radiation mutation breeding, biotechnology and genetic engineering methods have been also used in breeding pest-resistant tea cultivars (Liang & Shi, 2016). During 2000-2010, twenty national level tea cultivars were released (Table 1), among which 'Qianmei-809' is resistant to tea blister blight and *Lepidosaphes ume*, while 'Wannong-91' is resistant to *Aleurocanthus spiniferus* and *Empoasca flavescens*. New cultivar 'Zhongcha-108' is resistant to anthracnose (Liu et al., 2018).

3.1.4. Diverse targeting breeding stage

With the time entering 2010s, the demanding for tea products has becoming more and more diversified, including the diversification of sensory quality attributes (color, aroma, taste and appearance) and healthy functions. The tea breeding targeting high level EGCG (epigallocatechin gallate, the most

abundant component of antioxidant catechins), high level amino acids including functional theanine, high level methylated EGCG, high level anthocyanin, low level caffeine and colorful leaves has been lunched since early stage of twenty-first century, in which great progress was made, especially in breeding tea cultivars with traits of high level amino acids and albino leaves (Chen et al., 2009; Wu & Chen, 2011). Breeding targeting fragrant aroma and tea cultivars for harvesting both leaf and fruit is also lunched. Great progress has been made in breeding tea cultivars with high level of amino acids and albino leaves (Du et al, 2006; 2016).

			8	
No.	Cultivar Name	Registered in	Released by	Suitable for processing
1	Fudingdabai	1984	Fuding County, Fuajian Province	White tea, green tea
2	Fudingdahao	1984	Fuding County, Fuajian Province	White tea, green tea
3	Fuandabaicha	1984	Fuan County, Fuajian Province	White tea, green tea
4	Meizhan	1984	Anxi County, Fuajian Province	Oolong tea
5	Zhenghedabai	1984	Zhenghe County, Fuajian Province	White tea, black tea
6	Maoxie	1984	Anxi County, Fuajian Province	Oolong tea, green tea
7	Tieguanyin	1984	Anxi County, Fuajian Province	Oolong tea
8	Huangdan	1984	Anxi County, Fuajian Province	Oolong tea, black tea
9	Wuyishuixian	1984	Jianyang City, Fuajian Province	Oolong tea, black tea
10	Benshan	1984	Anxi County, Fuajian Province	Oolong tea
11	Dayewulong	1984	Anxi County, Fuajian Province	Oolong tea
12	Mengkudaye	1984	Shuangjiang County, Yunnan Province	Black tea, Puerh tea
13	Fengqingdaye	1984	Fengqing County, Yunnan Province	Black tea, Puerh tea
14	Menghaidaye	1984	Menghai County, Yunnan Province	Black tea, Puerh tea
15	Lechangbaimao	1984	Lechang County, Guangdong Province	Black tea
16	Hainandaye	1984	Wuzhi Mountains, Hainan Province	Black tea
17	Fenghangshuixian	1984	Chaoan County, Guangdong Province	Oolong tea, Black tea
18	Damianbai	1984	Shangrao County, Jiangxi Province	Green tea, Black tea
19	Shangmeizhou	1984	Wuyuan County, Jiangxi Province	Green tea
20	Ningzhouzhong	1984	Xiushui County, Jiangxi Province	Black tea, Green tea
21	Huangshanzhong	1984	Huangshan City, Anhui Province	Green tea
22	Keemenzhong	1984	Qimen County, Anhui Province	Black tea
23	Jiukengzhong	1984	Chunan County, Zhejiang Province	Green tea
24	Yuntaishanzhong	1984	Anhua County, Hunan Province	Black tea, Green tea
25	Meitantaicha	1984	Meitan County, Guizhou Province	Green tea
26	Lingyunbaimaocha	1984	Lingyun County, Guangxi Province	Green tea, Black tea
27	Ziyangzhong	1984	Ziyang County, Shaanxi Province	Green tea
28	Zaobaijian	1984	Yunlian County, Sichuan Province	Green tea
29	Yichangdayecha	1984	Yichang County, Hubei Province	Black tea, Green tea

Table 1.	Registered	national	tea	cultivars	in	China
I UDIC II	Registered	nanonai	icu	curuyurs	111	China

Agriculture & Food ISSN 1314-8591, Volume 7, 2019

Journal of International Scientific Publications

www.scientific-publications.net

30	Yixingzhong	1984	Yixing County, Jiangsu Province	Green tea
31	Qianmei-419	1987	Guizhou Tea Research Institute	Black tea
32	Qianmei-502	1987	Guizhou Tea Research Institute	Black tea
33	Fuyun-6	1987	Fujian Tea Research Institute	Green tea, White tea
34	Fuyun-7	1987	Fujian Tea Research Institute	Green tea, black tea
35	Fuyun-10	1987	Fujian Tea Research Institute	Black tea, Green tea
36	Zhuyeqi	1987	Hunan Tea Research Institute	Green tea, Black tea
37	Longjing-43	1987	Tea Research Institute of CAAS	Green tea
38	Anhui-1	1987	Anhui Tea Research Institute	Black tea, Green tea
39	Anhui-3	1987	Anhui Tea Research Institute	Black tea, Green tea
40	Anhui-7	1987	Anhui Tea Research Institute	Green tea
41	Yingshuang	1987	Hangzhou Tea Research Institute	Green tea
42	Cuifeng	1987	Hangzhou Tea Research Institute	Green tea
43	Jingfeng	1987	Hangzhou Tea Research Institute	Green tea
44	Biyun	1987	Tea Research Institute of CAAS	Green tea
45	Zhenong-12	1987	Zhejiang University	Green tea, Black tea
46	Shuyong-1	1987	Chongqing Tea Research Institute	Black tea
47	Shuyong-2	1987	Chongqing Tea Research Institute	Black tea
48	Yinghong-1	1987	Guangdong Tea Research Institute	Black tea
49	Ningzhou-2	1987	Jiujiang Tea Research Institute	Black tea
50	Yunkang-10	1987	Yunnan Tea Research Institute	Black tea, Green tea
51	Yunkang-14	1987	YunnanTea Research Institute	Black tea, Green tea
52	Juhuachun	1987	Tea Research Institute of CAAS	Green tea
53	Guihong-3	1994	Guilin Tea Research Institute	Black tea
54	Guihong-4	1994	Guilin Tea Research Institute	Black tea
55	Yangshulin-783	1994	Agricultural Bureau of Qimen County	Green tea
56	Wannong-95	1994	Anhui Agricultural University	Green tea, Black tea
57	Xicha-5	1994	Wixi Tea Research Institute	Green tea
58	Xicha-11	1994	Wixi Tea Research Institute	Black tea, Green tea
59	Hanlu	1994	Tea Research Institute of CAAS	Green tea
60	Longjingchangye	1994	Tea Research Institute of CAAS	Green tea
61	Zhenong-113	1994	Zhejiang University	Green tea
62	Qingfeng	1994	Hangzhou Tea Research Institute	Green tea
63	Xinyang-10	1994	Xinyang City	Green tea
64	Baxiancha	1994	Sci-Tech Committee of Shaoan County, Fujian Province	Oolong tea, green tea
65	Qianmei-601	1994	Guizhou tea Research Institute	Black tea
66	Qianmei-701	1994	Guizhou tea Research Institute	Black tea

Agriculture & Food ISSN 1314-8591, Volume 7, 2019

Journal of International Scientific Publications

www.scientific-publications.net

67	Gaoyaqi	1994	Hunan Tea Research Institute	Black tea, Green tea
68	Zhuyeqi-12	1994	Hunan Tea Research Institute	Black tea, Green tea
69	Baihaozao	1994	Hunan Tea Research Institute	Green tea
70	Jianbohuang-13	1994	Hunan Tea Research Institute	Green tea
71	Shuyong-703	1994	Chongqing Tea Research Institute	Green tea
72	Shuyong-808	1994	Chongqing Tea Research Institute	Black tea
73	Shuyong-307	1994	Chongqing Tea Research Institute	Black tea
74	Shuyong-401	1994	Chongqing Tea Research Institute	Black tea
75	Shuyong-3	1994	Chongqing Tea Research Institute	Black tea
76	Shuyong-906	1994	Chongqing Tea Research Institute	Black tea, Green tea
77	Echa-4	1998	Hubei Yichang County	Green tea
78	Fuzao-2	2002	Qimen tea Research Institute	Black tea, Green tea
79	Lingtoudancong	2002	Raoping County, Guangdong Province	Oolong tea, Black tea, green tea
80	Xiuhong	2002	Guangdong Tea Research Institute	Black tea
81	Wulinghong	2002	Guangdong Tea Research Institute	Black tea
82	Yundadanlu	2002	Guangdong Tea Research Institute	Black tea
83	Gancha-2	2002	Wuyuan Tea Research Institute	Black tea
84	Qianmei-809	2002	Guizhou Tea Research Institute	Black tea, Green tea
85	Shuchazao	2002	Shucheng Agricultural Bureau	Green tea
86	Wannong-111	2002	Anhui agricultural University	Green tea
87	Zaobaijian-5	2002	Chongqing Tea Research Institute	Green tea, Black tea
88	Nanjiang-2	2002	Chongqing Tea Research Institute	Green tea
89	Zhenong-21	2002	Zhejiang University	Green tea, Black tea
90	Echa-1	2002	Hubei Agricultural Academy	Green tea
91	Zhongcha-102	2002	Tea Research Institute of CAAS	Green tea
92	Huangguanyin	2002	Fujian Tea Research Institute	Oolong tea, Green tea
93	Yuemingxiang	2002	Fujian Tea Research Institute	Oolong tea, Green tea
94	Mingke-1	2002	Fujian Tea Research Institute	Oolong tea, Green tea
95	Huangqi	2002	Fujian Tea Research Institute	Oolong tea, Green tea
96	Guilu-1	2004	Guilin Tea Research Institute	Green tea, Black tea
97	Mingshanbaihao-131	2006	Mingshan Tea Bureau, Sichuan	Green tea
98	Xiaouchunbolu	2010	Xiapu Tea Bureau, Fujian	Green tea, Black tea
99	Chunyu-1	2010	Wuyi Agricultural Bureau, Zhejiang	Green tea
100	Chunyu-2	2010	Wuyi Agricultural Bureau, Zhejiang	Green tea
101	Maolu	2010	Hangzhou Tea Research Institute	Green tea
102	Nanjiang-1	2010	Chongqing Tea Research Institute	Green tea
103	Shifocui	2010	Anqing Crop Plantation Bureau, Anhui	Green tea

Agriculture & Food ISSN 1314-8591, Volume 7, 2019

www.scientific-publications.net

104	Wancha-91	2010	Anhui Agricultural University	Green tea, Black tea
105	Raoshanxiulu	2010	Guilin Tea Research Institute	Green tea
106	Guixiang-18	2010	Guilin Tea Research Institute	Green tea, Black tea
107	Yulu	2010	Hunan Tea Research Institute	Green tea
108	Zhenong-139	2010	Zhejiang University	Green tea
109	Zhenong-117	2010	Zhejiang University	Black tea, Green tea
110	Zhongcha-108	2010	Tea Research Institute of CAAS	Green tea
111	Zhongcha-302	2010	Tea Research Institute of CAAS	Green tea
112	Dangui	2010	Fujian Tea Research Institute	Oolong tea, green tea, Black tea
113	Chunlan	2010	Fujian Tea Research Institute	Oolong tea, green tea, Black tea
114	Ruixiang	2010	Fujian Tea Research Institute	Oolong tea, green tea, Black tea
115	Echa-5	2010	Hubei Agricultural Academy	Green tea
116	Hongyan-9	2010	Guangdong Tea Research Institute	Green tea, Oolong tea
117	Hongyan-12	2010	Guangdong Tea Research Institute	Green tea, Oolong tea
118	Hongyan-7	2010	Guangdong Tea Research Institute	Green tea, Oolong tea
119	Hongyan-1	2010	Guangdong Tea Research Institute	Green tea, Oolong tea
120	Baimao-1	2010	Guangdong Tea Research Institute	Black tea, Green tea, Oolong tea
121	Jinmudan	2010	Fujian Tea Research Institute	Oolong tea, Green tea, Black tea
122	Huangmeigui	2010	Fujian Tea Research Institute	Oolong tea, Green tea, Black tea
123	Zimudan	2010	Fujian Tea Research Institute	Oolong tea
124	Tezao-213	2012	Mingshan Agricultural Bureau, Sichuan	Green tea
125	Zhongcha-111	2014	Tea Research Institute of CAAS	Green tea
126	Qiancha-8	2014	Guizhou Tea Research Institute	Green tea
127	Anqing-8902	2014	Tea Industry Association of Anqing , Anhui	Green tea
128	Bayutezao	2014	Agrotechnical extension station of Chongqing	Green tea
129	Shanpolu	2014	Tea Industry Association of Shucheng, Anhui	Green tea
130	Sucha-120	2014	Tea variety Research Institute of Wuxi, Jiangsu	Green tea
131	Huaqiu-1	2014	Huaqiu Tea Industry Co. Ltd. Sichuan	Green tea
132	Tianfu-28	2014	Sichuan Tea Research Institute	Green tea
133	Xiangfeicui	2014	Hunan Agricultural University	Green tea
134	Hongyan-13	2014	Guangdong Tea Research Institute	Oolong tea

3.2. The problems facing Chinese tea breeding and their countermeasures

3.2.1. Reforming breeding program to shorten breeding cycle

Based on the previous breeding program, it will take about 22 years to breed a registered national tea cultivar, i.e., taking 2 years for crossing and getting the hybrid seeds, 5 years for identifying hybrid offspring individuals, 5 years for strain comparison test, 5 years for provincial level regional adaptation test and 5 years for national level regional adaptation test (Figure 1). The breeding program is now reformed and the provincial and national regional adaptation tests can be carried out simultaneously. In this case, it will take 17 years to finish a breeding program cycle.

Figure 1. Breeding program of tea cultivars

3.2.2. Developing precision identifying techniques to accelerate hybrid individual screen

Sensory evaluation of made tea is usually used to assess quality of a tea cultivar. However, it usually takes hundreds of grams of fresh leaves to process a made tea sample, whose demand is very difficult to be met at the early stage of individual screening. Metabolomic technique is now used to precisely reveal the profiles of more than 100 chemical compounds in tea using a few grams of sample. We can predict the quality potential of a hybrid individual plant based on the chemical profiles. In this case, individuals with low quality potential will be abandoned quickly to accelerate the hybrid individual screening process.

3.2.3. Developing rapid propagation method to expend the population of a screened strain

When tea plant is propagated by cutting, it takes 16-18 months before the young plants can be transplanted to tea field. Therefore, 3-4 years are needed to expand from a hybrid individual to a population enough for strain comparison test (at least 200 plants in total). We developed a rapid propagation system in which the cut plants can be transplanted in 2-3 months and 200 plants can be propagated from a hybrid individual plant in 2 years.

3.2.4. Developing molecular markers for molecular assisted selection

Molecular markers are closely linked to the genes determining the target traits. Molecular markerassisted breeding is to use molecular markers closely linked with the genes determining the target traits. By detecting molecular markers, the presence of the target genes can be detected and the target traits can be selected (Zhou et al., 2019). Molecular marker assisted selection shortens the breeding period, speeds up the breeding process, improves the breeding efficiency and overcomes the difficulties arisen in the conventional breeding methods (Yang et al., 2009; Yao et al., 2012; Tan et al., 2013; 2015;). The development of new molecular markers linked to disease resistance, insect resistance, drought resistance, high yield, and quality improvement (Chen et al., 2007; Tan et al., 2018) will accelerated the tea breeding procedures.

4. CONCLUSIONS

There are 134 registered national tea cultivars in China. The systematic tea breeding since 1950s can be divided into four stages, i.e., high yield breeding stage, quality breeding stage, pest-resistance breeding stage and diversified breeding target stage. Long breeding program period is a major problem facing the tea breeding field in China. China is taking a variety of management measures and technological measures to accelerate the tea plant breeding program cycle, including the reform of breeding procedures, the techniques for precisely identifying tea cultivar quality, rapid propagation techniques and molecular marker assisted breeding.

ACKNOWLEDGMENTS

This research was financially supported by grants from the Science Technology Department of Zhejiang Province (Project No. 2016C02053-5) and the Science Technology Bureau of Ningbo City (Project No. 2017C10001).

REFERENCES

- 1. Bai K, Yu F, Yang Y, Fang J. 2001, "Chinese tea tree species", Shanghai Scientific and Technical Publications. Shanghai. Pp15-63.
- 2. Chen L, Zhou ZX, Yang YJ. 2007. "Genetic improvement and breeding of tea plant (*Camellia sinensis*) in China: from individual selection to hybridization and molecular breeding. *Euphytica*, vol.154, 239–248.

- 3. Chen L, Zhou ZX. 2005. "Variations of main quality components of tea genetic resources [*Camellia sinensis* (L.) O. Kuntze] preserved in the China National Germplasm Tea Repository. *Plant Foods for Human Nutrition*, vol.60, 31–35.
- 4. Chen S, Qi G, Li J, Xia J. 2009. "Advances in less caffeine tea plant breeding", Fujian Tea, vol.2009, No.1, 2-3.
- 5. Du YY, Liang YR, Wang H, Wang KR, Lu JL, Zhang GH, Lin WP, Li M, Fang QY. 2006, "A study on the chemical composition of albino tea cultivars", *The Journal of Horticultural Science and Biotechnology*, vol.81, no.5, 809-812.
- 6. Li L, Ma J, Luo L, Wang X. 2007. "The spread of tea cultivar longjing 43 in zhejiang province and its economic benefit analysis", Journal of Tea, vol.33, No.1, 38-40.
- Li N, Yang Y, Ye J, Lu J, Zheng X, Liang Y. 2016, "Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant. Plant Growth and Regulation, vol.78, 253–262.
- Li P, Dai W, Lu M, Xie D, Tan J, Yang C, Zhu Y, LV H, Peng Q, Zhang Y, Luo L, Ni D, Lin Z. 2018. "Metabolomic analysis reveals the composition differences in 13 Chinese tea cultivars of different manufacturing suitabilities", *Journal of the Science of Food Agriculture*, vol.98, 1153– 1161.
- 9. Liang Y, Feng Y. 2000, "Tea breeding and cultivation in China", *Journal of the Korean Tea Society*, vol. 6, no.21, pp. 97-119.
- 10. Liang Y, Liu Z. 1990, "A primary study on karyotype and classification of tea plant", *Journal of Zhejiang Agricultural University*, vol.16, No.1, 88-93.
- 11. Liang Y, Liu Z. 1994, "Studies n chemical composition and black tea quality of various tea clones", *Journal of Zhejiang Agricultural University*, vol.20, No.2, 149-152.
- 12. Liang Y, Shi M. 2015, "Advances in Tea Plant Genetics and Breeding", *Journal of Tea Science*, vol.35, No.2, 103-109.
- 13. Liu YY, Wang CM, Zeng X, Xiong H, Chen X. 2018. "Planting Performance of Zhongcha 108 (a new tea variety) in Yibin", *Guizhou Agricultural Sciences*, vol.46, No. 11, 107-111.
- 14. Tan LQ, Wang LY, Wei K, Zhang CC, Wu LY, et al. 2013. "Floral transcriptome sequencing for ssr marker development and linkage map construction in the tea plant (*Camellia sinensis*)", *PLoS ONE*, vol.8, No.11, e81611. doi:10.1371/journal.pone.0081611.
- 15. Tan LQ, Wang XY, Li H, Liu GQ, Zou Y, Chen SX, Li PW, Tang Q. 2018. "Variations of main quality components of tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the china national germplasm tea repository", *Hortscience*, Vol.53, No.8, 1095-1101.
- 16. Wu H, Chen D, Li J. 2011. "Research progress in caffeine metabolism and low caffeine content germplasm breeding of tea plants (*Camellia sinenesis* (L.) O. Kuntze)", *Chinese Journal of Tropical Crops*, vol. 32, No.9, 1780-1785.
- 17. Xu KM, Hu CX, Zhang XY, Zhang JJ, Ma C. 2011. "Preliminary Report on Introduction Experiment of Improved Tea-plant Varieties Zhe-nong139 and Zhe-nongll7 in Shanxi", *Hunan Agricultural Sciences*, vol.2011, No.17, 30-32.
- 18. Yan LQ, Peng M, Xu LY, Wang LY, Chen SX, Zou Y, Qi GN, Cheng H. 2015. "Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships", *Tree Genetics and Genomes*, vol.11, 90. DOI 10.1007/s11295-015-0914-6.
- 19. Yang JB, Yang J, Li HT, Zhao Y, Yang SX. 2009. "Isolation and characterization of 15 microsatellite markers from wild tea plant (Camellia taliensis) using FIASCO method", conservation genetics, vol.10, 1621–1623.

- 20. Yao MZ, Chen L, Liang Y. 2008. "Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes", Plant Breeding 127, 166-172.
- 21. Yao MZ, Ma CL, Qiao TT, Jin JQ, Chen L. 2012, "Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers", *Tree Genetics and Genomes*, vol.8, 205-220.
- 22. Zhou QQ, Li H, Hoang TX, Ruan X, Zhang Y, Arkorful E, Chen X, Sun K, Li XH. 2019. "genetic diversity and relationship of Dongting Biluochun tea germplasm in Suzhou revealed by SSR markers", Pakistan Journal of Botany, vol.51, No.3, 895-902.