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Abstract 

A finite element method (FEM) was developed to predict macrosegregation during alloys solidification 

with columnar structure. A fractional step method was employed to solve the thermosolutal convection 

in the mushy zone with a damping convection. The velocity and pressure were decoupled and 

interpolated by equal-order linear triangular elements. The time derivative terms were discretized by a 

fully implicit Euler backward method. The convection-diffusion equations of energy, solute and 

momentum were spatially discretized by the consistent SUPG method, and the terms of convection, 

diffusion, pressure gradient, Darcy drag, and buoyancy were integrated using the second-order Crank-

Nicolson method. A solution procedure was designed to couple the resolutions of conservations of 

energy, solute and momentum, as well as the microsegregation model at an overall computational 

efficiency and accuracy. The FEM was applied to predict macrosegregation during solidification of Pb-

18wt%Sn alloy in a rectangular mold. The macrosegregation maps, temperature fields, velocity fields 

and liquid fraction fields, as well as evolutions of liquid fraction, average mass concentration and 

velocity magnitude were presented. 
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1. INTRODUCTION 

Macrosegregation is a defect of chemical heterogeneities in many solidification processes, and it 

deteriorates microstructure and mechanical properties of the products. Macrosegregation is caused by 

relative movements of solid and liquid phases, which are related to the transport phenomena that take 

place over several characteristic length scales ([1] Lesoult 2005). Numerical models were originally 

concentrated on the effect of solute redistribution, and included only buoyancy-driven convection in the 

interdendritic liquid ([2] Flemings & Nereo 1967). Subsequently, transport equations accounting for 

different length scales were derived by a volume averaging technique ([3] Ni & Beckermann 1991) or 

mixture theory ([4] Bennon & Incropera 1987). After that, multiphase models ([5] Li et al. 2012) that 

couples multiple sets of conservation equations for different phases were developed. Nevertheless, the 

coupling of global multiphase transport phenomena with microscopic solidification kinetics is extremely 

complex and requires large amount of computation resources. As a consequence, the one-domain model 

based on the volume averaging technique or mixture theory is still fundamental and inevitable in 

practice.  

The major advantage of finite element method (FEM) is the flexibility of mesh discretization, and 

arbitrarily shaped domains can be easily approximated by unstructured meshes with high accuracy. The 

disadvantage is that larger computation amount and higher memory are required than other numerical 

methods such as the finite volume method. In the case of solidification, the efficiency is lower further 

due to another range of factors. Firstly, a coupled system of equations resulting from conservations of 

energy, mass, momentum and solute must be solved. Nonlinearities in these equations should be dealt 

with carefully, and a specific solution procedure is needed to couple different transport phenomena 

efficiently. Secondly, the numerical solution of incompressible flows is inherent difficult, because the 

velocity and pressure are coupled by the incompressibility constraint implicitly. 

The objective of the present work is to present a finite element formulation for the prediction of 

macrosegregation with solidification columnar ([6] Bellet et al. 2009). A fractional step method ([7] 

Choi, Choi & Yoo 1997), which was originally used in Navier-Stokes equations, was extended to solve 
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the thermosolutal convection during solidification. The formulation was applied to a reference case. The 

results and comparison with those obtained by the FEM code of CEMEF ([8] Combeau et al. 2011, [9] 

Combeau et al. 2012) were presented. 

 

2. METHODS 

2.1. Mathematical model 

The “minimal” model proposed by Bellet et al. (2009) for solidification of binary alloys was 

implemented in present work. The liquid flow is assumed as laminar and Newtonian, the solid phase is 

fixed and non-deformable, and the mushy zone is treated as a porous medium with isotropic permeability 

defined by the Carman-Kozeny relation ([10] Carman 1937). Local thermodynamic equilibrium is kept 

at the solid/liquid interface, with perfect solute diffusion in both phases (lever rule). All properties in 

both solid and liquid phases are equal and constant, except the density in the buoyancy term, which is 

determined by the Boussinesq approximation. The conservation equations of mass, momentum, energy 

and solute are written as follows: 

Total mass Conservation: 

=0 V           (1) 

where V is the average liquid velocity vector. 

Momentum Conservation for liquid phase: 
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where p is the pressure, t the time, ρ the reference density, ρb the density in the buoyancy term, gl the 

liquid fraction, μl the dynamic viscosity of the liquid, K the permeability in the mushy zone, and g the 

gravity vector. 

Energy Conservation: 
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where H is the volume averaged specific enthalpy, T the temperature, λ the average thermal conductivity, 

and cp the specific heat. 

Solute Conservation: 

=0l

w
w

t


 


V

         (4) 

where w and wl are the average mass concentration and the average mass concentration in liquid, 

respectively. 

The supplementary relations are given by: 

Permeability of the mushy zone: 
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where λ2 is the secondary dendrite arm spacing. 

Density in the buoyancy term: 
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   1b T ref w l refT T w w        
        (6) 

where βT is the thermal expansion coefficient, βw the solutal expansion coefficient, Tref the reference 

temperature, and wref  the reference mass concentration. 

Volume averaged enthalpy: 

 p lH c T g L 
        (7) 

where L is the latent heat of fusion. 

Microsegregation model (lever rule): 

 s p lw k w
         (8) 

 l l s sw g w g w 
         (9) 

 
1l sg g 

         (10) 

 m l lT T m w 
        (11) 

where ws is the average mass concentration in solid, kp the partition coefficient (<1), gs the solid fraction, 

Tm the melt temperature of pure solvent, and ml the liquidus slope (<0). 

2.2. Fractional step method 

In order to circumvent the difficulty of solving a large system induced by mixed finite element methods, 

a fully implicit four-step fractional method ([7] Choi, Choi & Yoo 1997) originally used to solve the 

Navier-Stokes equations was extended to solve the thermosolutal convection which has a damping in 

the mushy zone during solidification. Using this method, the coupled system of conservation equations 

of mass and momentum was split into several decoupled systems of much smaller size, which can be 

solved easily with much less computational cost. The time derivative was discretized by a fully implicit 

Euler backward method. The terms of convection, diffusion, pressure gradient, Darcy drag, and 

buoyancy were integrated using the Crank-Nicolson method which has second-order accuracy. The 

resulting time-discrete equations of the decoupled systems corresponding to Eq.(1-2) are written as 

follows: 
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where superscript n denotes the time level, and ∆t the time step. The liquid fraction gl, permeability K 

and density ρb are all evaluated at time level n+1/2. As the permeability is highly nonlinear with the 

liquid fraction and unable to be integrated accurately, the Darcy drag term was included only in Eq.(12) 

to improve the computational efficiency. With the pressure gradient term treated explicitly, an 

intermediate velocity V̂  was first solved by Eq.(12), and substituted to Eq.(13) to calculate another 

intermediate velocity 
*

V . Then, the pressure was obtained by the pressure Poisson equation Eq.(14) 
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derived from the incompressibility constraint. Finally, the velocity was corrected by Eq.(15) with the 

new pressure. 

To understand why the decoupled systems can approximate the original system, one can take the sum 

of Eqs.(12), (14), and (15), and get 
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Obviously, the approximation accuracy depends on the accuracy that V̂  approximates 
+1n

V . On the other 

hand, according to Eqs.(13) and (15), the intermediate velocity can be expressed as follows: 

   +1 +1 +1 2ˆ =
2

n n n n
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t
g p p O t
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     (17) 

This indicates that the decoupled systems is a good approximation to the original system. As the fully 

implicit time-stepping scheme is used, the time step is restricted only by the solution accuracy. 

Furthermore, it has been demonstrated that the four-step fractional method can well accommodate the 

lowest equal-order polynomial pairs (i.e., P1/P1 or Q1/Q1) ([7] Choi, Choi & Yoo 1997). 

 

3. RESULTS AND DISCUSSION 

As a response to the reference case proposed by Bellet et al. (2009) for macrosegregation during 

solidification of Pb-18wt%Sn alloy, results predicted by the present FEM code, and comparison with 

those obtained by the FEM code of CEMEF, i.e., the software R2SOL ([8] Combeau et al. 2011, [9] 

Combeau et al. 2012), are presented in this section. The configuration chosen is a 2D ingot casting which 

is schematically described in Fig. 1. A quiescent and homogeneous liquid binary metal at the liquidus 

temperature corresponding to the nominal mass concentration is initially contained in a rectangular mold 

with 60 mm height and 100 mm width. The mold is cooled down symmetrically on the left and right 

walls which are imposed a Fourier-type boundary condition, and insulated on the top and bottom walls. 

A no-slip condition for the velocity is imposed on all walls. Thus, assuming the symmetry of the 

solution, the calculation domain can be simplified as a half of the mold. In order to make results 

comparable with those obtained by the FEM code of CEMEF, a uniform structured mesh with 201×241 

nodes (the average mesh size is 2.5×10-4 m) and a fixed time step of 5×10-3 s are used in the present 

simulations. More details of the configuration, and all thermophysical parameters can be referred to 

Bellet et al. (2009). 
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Fig. 1. Schematic of the solidification configuration of the two reference cases 

 

The temperature field, velocity field and liquid fraction field, as well as the segregation maps at 120 s 

and the end of solidification of the Pb-18wt%Sn ingot are shown in Fig. 2. As the liquid density 

decreases with the decreasing temperature along the liquidus line, the circulation of the liquid resulting 

from the solidification in the ingot is counterclockwise, as shown in Fig. 2(b). Due to the higher damping 

for the flow, the isotherm is more vertical with lower liquid fraction, as shown in Fig. 2(a). In the upper 

left region where the liquid fraction is high, however, the isotherms bend to the left because of the 

counterclockwise circulation of the liquid. In Fig. 2(b), some channels, where the liquid fraction is 

locally greater, have already been formed. They originate from the early stage of solidification, 

indicating that the formation of channels is related to the flow at high liquid fraction. Because of smaller 

penetration resistance, these channels become preferential paths for the flow of the solute enriched 

liquid. In Fig. 2(c), there already are developed positive segregation inside these channels and severe 

negative segregation in the vicinity of them, respectively. Moreover, it can be seen from the final 

segregation map shown in Fig. 2(d) that the channels formed previously (Fig. 2(c)) are all retained and 

further developed. The final macrosegregation can be recognized as a positive segregation band along 

the axis of symmetry, a negative segregation pocket in the lower region, and the segregation channels 

inclined to the upper left in the upper right region. Compared to the final macrosegregation map obtained 

by the FEM code of CEMEF ([9] Combeau et al. 2012), general agreement can be observed, though 

differences can be found in detailed characteristics. 

Evolutions of the liquid fraction and average mass concentration of Sn at point E (shown in Fig. 1) are 

shown in Fig. 3. Following the microsegregation model, the solute Sn is redistributed at the solid/liquid 

interface, leaving a Sn enriched liquid and a Sn depleted solid. As the Sn enriched liquid is brought from 

the mushy zone into the bulk liquid by the circulation of the liquid, the average mass concentration of 

Sn in the mushy zone decreases. It is notable that the average mass concentration of Sn decreases until 

the liquid fraction is less than 0.2, indicating that the interdendritic liquid flow in the mushy zone is 

responsible for macrosegregation. In the case of low liquid fraction, compared to the terms of pressure 

gradient, Darcy drag, and buoyancy in the momentum equation Eq.(2), the convective term in this 

equation is negligible. 
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Fig. 2. Physical fields predicted during solidification of the Pb-18wt%Sn ingot 
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Fig. 3. Evolutions of the liquid fraction and average mass concentration of Sn at point E in the Pb-

18wt%Sn ingot during solidification 

 

4. CONCLUSIONS 

A finite element formulation for the prediction of macrosegregation in columnar solidification alloys 

has been developed. In this formulation, a fractional step method, which was originally used in Navier-

Stokes equations, was extended to solve the thermosolutal convection that has a damping in the mushy 

zone during solidification. By using this method, the velocity and pressure in the coupled system of 

conservations of mass and momentum were decoupled and interpolated by equal-order linear triangular 

elements, resulting in several systems of much smaller size, which can be solved easily with much less 

computational cost. For convection-diffusion equations of energy, solute and momentum, the consistent 

SUPG method and the second-order Crank-Nicolson scheme were used to the discretization and 

integration over the spatial domain, respectively. The resolutions of conservations of energy, solute and 

momentum, as well as the microsegregation model were coupled by a solution procedure at an overall 

computational efficiency and accuracy.  

The finite element formulation was applied to the reference case proposed by Bellet et al. (2009). On 

one hand, macrosegregation maps, temperature fields, velocity fields, and liquid fraction fields, as well 

as evolutions of liquid fraction, average mass concentration, and velocity magnitude were obtained, 

showing a good capacity of the present finite element formulation for numerical simulation of 

macrosegregation. On the other hand, the macrosegregation patterns obtained by the present FEM code 

and the FEM code of CEMEF ([8] Combeau et al. 2011, [9] Combeau et al. 2012) are in generally good 

agreement, but differences can also be observed in quantitative comparisons, especially for the velocity 

at high liquid fraction. Therefore, more numerical comparisons of computer codes based on FEM and 

experimental results corresponding to the reference case are still needed to assess different numerical 

algorithms and more complex solidification models. 
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