EPIDEMIOLOGIC APPROACHES OF BRUCELLOSIS THROUGH PHYLOGENETIC ANALYSIS PATTERN IN PALESTINE

Elena Awwad1,2, Stelian Baraitareanu1, Maria Rodica Gurau1, Mohammad Faraj3, Tamer Essawi3, Kamel Adwan4, Doina Danes1

1University of Agronomic Science and Veterinary Medicine, Faculty of Veterinary Medicine, Bucharest, Romania
2Ministry of Agriculture, General Directorate of Veterinary Services and Animal Health, Central Veterinary Laboratory, Ramallah, Palestine
3Master Program in Clinical Laboratory Science (MCLS), Birzeit University, Birzeit, Palestine
4Department of Biology and Biotechnology, An-Najah National University, Nablus, Palestine

Abstract

Brucellosis is an endemic zoonotic disease of the small ruminants in Palestine. The previous study revealed that the lpsB gene (responsible for the biosynthesis of mannosyltransferase) of Brucella melitensis has a degree of genetic diversity. Despite these variations, the bacteria keep its virulence and ability to produce abortion and human infection. The aim of this study was to identify the evolutionary relationships between 18 field strains of Brucella melitensis isolated from herds from West Bank, and to compare them with strains from different countries, using phylogenetic analysis, in order to characterize their epidemiological pattern. The sequencing of the lpsB gene of the 18 field strains has been performed with ABI PRISM 3500 Genetic Analyzer. The alignment and the phylogenetic analysis between field isolates, Brucella melitensis reference strain and Rev 1 strains were done with CLC Workbench version 6.1.5 software. The analysis revealed that all field isolates were closely related to each other: isolates from neighboring districts have had close variations, but the strongest relationship was among strains from flocks of the same village. The isolates from some flocks were closer to Brucella melitensis Rev 1, suggesting the exposure or infection of these with the vaccinal strain. Viewed in a global context, the West Bank isolates were phylogenetically closest to the Spanish isolates. This study highlights the input of the phylogenetic tree analysis as an epidemiological tool for the investigation of Brucella infection.

Key words: brucellosis, zoonosis, phylogenetic tree, alignment

1. INTRODUCTION

Brucellosis is zoonotic disease and an important public health problem worldwide, mainly in Mediterranean countries (Doganay & Aygen 2003; Gul & Khan 2007; Refai 2002). The genus Brucella include 11 species of intracellular, gram-negative bacteria (Mayer-Scholl 2010; Pappas 2010; Scholz & Vergnaud 2013), the most important of them, for the public health, being Brucella melitensis. Due to the close homology between the Brucella species/strains, some researchers propose to consider all the Brucella as single species, who is grouping different biovars (DelVecchio et al. 2002; Whatmore 2009). The infections produced by B. melitensis in small ruminants are still frequent, resulting in human illness, primarily by consumption of contaminated dairy products or as professional exposure to infected livestock (Saleem, Boyle & Sriranganathan 2010; Kaoud et al. 2010; Doganay & Aygen 2003; Zvizdic et al. 2006; Scientific Committee on Animal Health and Animal Welfare 2001). This disease causes significant economic losses by decreasing productivity in reason of the abortions, of the weakness of offspring, of the diminishing of milk production and of the loss of trade opportunities (Food and Agriculture Organization 2010). In humans, the disease manifested as well as flu and if not diagnosed and treated promptly and effectively, it can become chronic and affect multiple body systems (Food and Agriculture Organization 2010; Saleem, Boyle, & Sriranganathan 2010; Scientific Committee on Animal Health and Animal Welfare 2001; World Health Organization 1999; Zvizdic et al. 2006).
The ability of sugar modification to allow survive, replicate and avoid apoptosis intra phagocytes, is essential virulence factor of pathogenesis (Gomes-Cardoso et al. 2006; Castaneda-Roldan et al. 2006; Delrue et al. 2001, 2004; Lapaque et al. 2006; Letesson & de Bolle 2004; Moreno & Gorvel 2004; Reeves 1994; Scholz & Vergnaud 2013; Wang et al. 2010; Xavier et al. 2010).

Animals are the main source for the transmission of this pathogen, therefore, several eradication programs of brucellosis, using vaccination of the animals, surveillance studies to identify the infected farm animals, the slaughter of animals and the limitation of movement in the regions where the infection has been detected, have been launched in many countries, but the success of these programs still has not reached the required level (Corbel 2006; Food and Agriculture Organization 2010).

The information on the prevalence of Brucella - species, biovars, genotypes/strains - in endemic areas may shed new light on the epidemiology of Brucella infection, on the species/biovars circulating, as well as on the efficacy of the control policy. The understanding of the Brucella epidemiology is critical for refining the control of brucellosis, in countries with limited resources, who cannot implement the same policy as in high-income countries (Corbel 2006; Gul & Khan 2007; Kaud 2010). Therefore, there are simple structural properties of phylogenetic trees can distinguish communicable disease outbreaks in endemic areas, can identify sources and chains of transmission, when possible using genome data alone, and can be done during an outbreak to support his management (Colijn & Gardy 2014; Hall 2011).

The Palestine economy is mainly based on the agriculture, crop and animal husbandry as well (Ministry of Agriculture in Palestine 2014). The farmers are exposed to a broad spectrum of pathogens and some of them become diseased. In this respect, more systematic studies will be required to establish the epidemiological situation of brucellosis and the significance of the strains/biovars circulating in the livestock of Palestine. These data could guide the decision makers in Palestine to select the suitable alternative for future control strategies and eradication of brucellosis, at the animal and humans.

2. MATERIALS AND METHODS

2.1. Samples collection and bacterial isolation

All milk samples were obtained from animals during their routine milking time. The cream and sediment mixtures of milk were assessed after centrifugation of samples (10 mL) at 2000g, 4°C for 20 minutes, then were spread onto Brucella agar plates (Oxoid, UK), incubated at 37°C for 2 to 7 days and plates were daily examined for the colony presence and identification according to standard methods. In this study were used the suspensions of 18 pure isolates of Brucella, from the different geographical sites, for PCR identification and sequencing [Table 1].

2.2. Primer design and PCR identification

The primers used in this study for lpsB gene were designed using Primer3 software (http://frodo.wi.mit.edu/primer3). As positive control, has been used 200μl of bacterial suspension of Brucella melitensis Rev.1 vaccine (Ovejero, Spain) submitted to DNA extraction procedure as prescribed by the commercial kit QIAamp RNA Mini Kit (Qiagen, Germany). PCR was performed in 25 μL volume master mix (Promega, Madison, WI, USA) containing 10 mM tris-HCl (pH 8.4), 50 mM KCl, 1 mM MgCl2, 200 μM each deoxyribonucleotide triphosphate (dATP, dGTP, dTTP, dCTP) and 0.5 U of Taq polymerase, and 10 nM of each primer (Syntezza, Israel). The primers (forward: 5’- TTCAGCTCATTCCATTTGCAG-3’; reverse: 5’-CGGATTATCTTCTCCATTCCAGAA-3’) were used to amplify a target sequence of 978-bp specific to the lpsB gene of B. melitensis. PCR was performed in a thermocycler (BioRad Laboratories, Inc., Hercules, CA, USA) as follows: 30 cycles of PCR, with 1 cycle consisting of 120 s at 95 °C initial DNA denaturation, 30 s at 60 °C for DNA annealing, and 30 s at 72 °C for polymerase-mediated primer extension with final extension at 72°C for 5 min. The last cycle included incubation of the sample at 72°C for 6 min. The PCR products were resolved by electrophoresis on 2% agarose gel with ethidium bromide (0.5 mg/mL).
Table 1. *Brucella melitensis* field isolates used in this study

<table>
<thead>
<tr>
<th>No of isolate</th>
<th>Host</th>
<th>District</th>
<th>Village</th>
<th>Gene Bank Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM - flock 1</td>
<td>sheep</td>
<td>Hebron</td>
<td>Yatta</td>
<td>KU980160</td>
</tr>
<tr>
<td>BM - flock 2</td>
<td>sheep</td>
<td>Jericho</td>
<td>Jericho</td>
<td>KU980145</td>
</tr>
<tr>
<td>BM - flock 3</td>
<td>sheep</td>
<td>Jenin</td>
<td>Qabatiya</td>
<td>KU980146</td>
</tr>
<tr>
<td>BM - flock 4</td>
<td>goat</td>
<td>Jenin</td>
<td>Qabatiya</td>
<td>KU980147</td>
</tr>
<tr>
<td>BM - flock 5</td>
<td>sheep</td>
<td>Hebron</td>
<td>Dura</td>
<td>KU980148</td>
</tr>
<tr>
<td>BM - flock 6</td>
<td>sheep</td>
<td>Bethlehem</td>
<td>Ta’amra</td>
<td>KU980149</td>
</tr>
<tr>
<td>BM - flock 7</td>
<td>goat</td>
<td>Hebron</td>
<td>Za’atara</td>
<td>KU980150</td>
</tr>
<tr>
<td>BM - flock 8</td>
<td>goat</td>
<td>Jericho</td>
<td>Al-Auja</td>
<td>KU980151</td>
</tr>
<tr>
<td>BM - flock 9</td>
<td>sheep</td>
<td>Hebron</td>
<td>Dura</td>
<td>KU980152</td>
</tr>
<tr>
<td>BM - flock 10</td>
<td>sheep</td>
<td>Hebron</td>
<td>Za’atara</td>
<td>KU980153</td>
</tr>
<tr>
<td>BM - flock 11</td>
<td>sheep</td>
<td>Ramallah</td>
<td>Qubbiya</td>
<td>KU980154</td>
</tr>
<tr>
<td>BM - flock 12</td>
<td>goat</td>
<td>Salfit</td>
<td>Bidya</td>
<td>KU980155</td>
</tr>
<tr>
<td>BM - flock 13</td>
<td>sheep</td>
<td>Nablus</td>
<td>Beit Furiq</td>
<td>KU980156</td>
</tr>
<tr>
<td>BM - flock 14</td>
<td>sheep</td>
<td>Hebron</td>
<td>Hebron</td>
<td>KU980157</td>
</tr>
<tr>
<td>BM - flock 15</td>
<td>sheep</td>
<td>Jericho</td>
<td>Al-Auja</td>
<td>KU980158</td>
</tr>
<tr>
<td>BM - Rev 1(16)</td>
<td>vaccine</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BM - flock 17</td>
<td>sheep</td>
<td>Jericho</td>
<td>Jericho</td>
<td>KU980159</td>
</tr>
<tr>
<td>BM - flock 18</td>
<td>sheep</td>
<td>Jericho</td>
<td>Al-Auja</td>
<td>KT357498</td>
</tr>
<tr>
<td>BM - flock 19</td>
<td>sheep</td>
<td>Hebron</td>
<td>Yatta</td>
<td>KT357499</td>
</tr>
</tbody>
</table>

2.3. Sequencing of PCR product

The PCR products were purified using the MinElute PCR purification kit (Qiagen, Germany) according to the manufacturer’s recommendations and the sequencing was performed by ABI PRISM 3500xL 8-channel Genetic Analyser (ABI, USA).

The sequencing was done in three steps. In the first one, it was done PCR running using Big Dye labeling for the differentiation of nucleotides sequence, as follow: 2μl RR, 2μl 5x sequencing buffer, 4μl of nuclease free water (kit BigDye terminator v3.1, ABI, USA), 3.2 pmol reverse primer, and 1μl of purified PCR products.

The amplification was carried out under thermal condition described below: 1 min at 96ºC for initial DNA denaturation, followed by 25 cycles consisting of 10s 96ºC for DNA denaturation, 5s 50ºC for annealing DNA and 4 min. at 60ºC for extension. The second step, the purification of sequencing products was performed using DyeEx 2.0 Spin kit (Qiagen, Germany), according to manufacturer instructions. In the third step, the samples were sequenced into the ABI PRISM 3500 Genetic Analyser.

2.4. The alignment and phylogenetic analysis

The alignment of the DNA sequences and the phylogenetic relationships of the Brucella field isolates, compared with the reference strain and the vaccine strain Rev.1, were conducted by using CLC Main Workbench software, version 5.6.1, 2009.
To determine genetic distances, it was used the UPGMA model of the phylogenetic tree software. The nucleotide sequences of the 18 B. melitensis field strains from Palestine, reported here, have been submitted to GenBank, who assigned them with the accession numbers [Table 1].

3. RESULTS
3.1. The alignment of sequences

The alignment of sequences of Brucella melitensis - 18 field strains and the reference strain - shows a different degree of variation [Figure 1].

Figure 1. Multiple sequences alignment of the 18 fields isolates the lpsB –like gene, of the reference strain Brucella melitensis 16M biovar 1 and of the Rev 1 strain. Several substitutions, insertions, deletions and frameshifts of the lpsB –like gene.
3.2. Phylogenetic tree analysis pattern

All samples have been originated from one ancestor. Samples of flocks 9, 5, 10, 7, 2, 11, 8, 5, 4, 3 are located on same branches and originated from same villages. Samples of flocks 2, 17, 1, 6 are closer to Brucella melitensis Rev 1 strain [Figure 2].

The Palestinian isolates of *Brucella melitensis* revealed that their sequences have relationship to the Spanish isolates, and also to isolates from Cyprus, Turkey, Israel, and India [Figure 3].

![Figure 2. Phylogenetic relationship of *Brucella melitensis* - field strain isolates, between them and the reference strain *Brucella melitensis* and the Rev 1 vaccine strain.](image1)

![Figure 3. The phylogenetic relationship of the *Brucella melitensis* - Palestinian field strains, with the isolates from other countries.](image2)
4. DISCUSSION

The accurate diagnosis and the epidemiological surveillance of the brucellosis, as well as the taxonomy of the genus *Brucella*, have clearly benefited from the appearance and development of molecular analysis.

The genetic homology and diversity between the isolates and the reference strain, comparing it with GenBank data, are able to indicate the relationship of the field strains and the data global recorded.

The straight homology with isolates from other countries, registered the wide geographical distribution of this clade. Therefore, the restrictive criteria for animals’ trade from neighboring countries must be in force, to enhance the rate of success of the control policy for *Brucella melitensis* disease in Palestine. The geographical location is an external risk factor, predicting the relationships between isolates; consequently, isolates from neighboring regions tending to be more closely related to each other (Bamaiyi et al. 2012; Corbel 2006; Gul & Khan 2007; Hall 2011; Mahmoud 2014; Mirnejad et al. 2012; Muendo et al. 2012; Mujizi 2015; Rajagunalani et al. 2013; Saitou & Nei 1987; Tien et al. 2015).

In some cases, geographical distance, it is less relevant for isolates with some level of variations and is irrespective whether they originated from man or animals, due to factors such as transhumance, mutation, breed and species variability (Al-Garadi et al. 2011; Nagalingam et al. 2012; Sayan et al. 2009).

The phylogenetic tree in our study contains a lot of information about the inferred evolutionary relationships among a set of field isolates.

The phylogenetic mapping analysis of the 18 field isolates of *B. melitensis* revealed a high level of homology, despite the presence of some degree of diversity, suggesting the same phylogenetic origin.

The strains sampled from the same village (the flocks 9, 5, 4, 3, 2, 17) express closer similar genetic variation, the phylogenetic analysis locating them on the same "tree" branches (the flocks 9, 5, 4, 3, 2, 17) [Figure 2]. This study shows also that strains from the same source (origin, geographic location) are evolving over a similar pattern, achieving similar variations - quite identical.

The strains isolated from the herd’s number 2, 17, 1, 6 had been closer to *Brucella melitensis* Rev 1 strain, bringing up the probability of the infection due to vaccine [Figure 2]. In conclusion, the slight variation degree of the field strains of *Brucella melitensis* does not alter its virulence and ability to produce a storm of abortion in ewes, and human infections.

The Palestinian isolates of *Brucella melitensis* revealed that their sequences have closest relationship to the Spanish isolates, and are also very close to isolates from Cyprus, Turkey, India, and Israel [Figure 3]. Corroborating this evidences with our above mentioned observation that the strains from the same source (origin, geographic location) are evolving over a similar pattern, we can assume a common ancestral evolutionary origin of the Palestinian field strains and isolates from Cyprus, Turkey, India, and Israel.

Despite the intensive vaccination program using the *Brucella melitensis* Rev 1 vaccine, in Palestine, the brucellosis remains a significant problem: the extremely high rate (95-100%) of cell envelope virulence-associated genes among Palestinian isolates, the ability of some of genes, like *lpkB*, to mutate and survive in different environment condition, without losing their virulence, seem to explain the unsatisfactory results of the vaccination program (Awwad et al. 2015).

It is possible that vaccinations initially reduce the circulation of *B. melitensis*, but the adaptive mutations allow the *B. melitensis* population to restore its high circulation rate. Also, environmental stress might contribute to the change in the makeup of the *B. melitensis* (Awwad et al. 2015; Bardenstein et al. 2002). Therefore, in Palestine only with a sustained mass vaccination program would be reduce the circulation of the field strains.
Phylogenetic analysis of *Brucella sp* contribute to better understanding of geographical transmission patterns and gives a reliable tool to be used by authorities, in order to implement control measures of outbreak, to prevent the spread of the disease among the human and animal population.

5. CONCLUSION

The phylogenetic analysis of Palestinian isolates of *Brucella melitensis* revealed the closest relationship to the Spanish isolates, and also with the isolates from Cyprus, Turkey, Israel, and India. The slight variation degree of the Palestinian field strains of *Brucella melitensis* does not alter its virulence and ability to produce animal and human infections. Phylogenetic analysis of the field isolates is a highly useful tool for the monitoring of brucellosis and for the assessment of the control policy.

REFERENCES


