A FINITE ELEMENT METHOD FOR PREDICTION OF MACROSEGREGATION WITH SOLIDIFICATION COLUMNAR
Qipeng Chen, Houfa Shen
Pages: 1-8
Published: 12 Sep 2020
Views: 1,222
Downloads: 218
Abstract: A finite element method (FEM) was developed to predict macrosegregation during alloys solidification with columnar structure. A fractional step method was employed to solve the thermosolutal convection in the mushy zone with a damping convection. The velocity and pressure were decoupled and interpolated by equal-order linear triangular elements. The time derivative terms were discretized by a fully implicit Euler backward method. The convection-diffusion equations of energy, solute and momentum were spatially discretized by the consistent SUPG method, and the terms of convection, diffusion, pressure gradient, Darcy drag, and buoyancy were integrated using the second-order Crank-Nicolson method. A solution procedure was designed to couple the resolutions of conservations of energy, solute and momentum, as well as the microsegregation model at an overall computational efficiency and accuracy. The FEM was applied to predict macrosegregation during solidification of Pb-18wt%Sn alloy in a rectangular mold. The macrosegregation maps, temperature fields, velocity fields and liquid fraction fields, as well as evolutions of liquid fraction, average mass concentration and velocity magnitude were presented.
Keywords: finite element, macrosegregation, solidification, fractional step, equal-order element
Cite this article: Qipeng Chen, Houfa Shen. A FINITE ELEMENT METHOD FOR PREDICTION OF MACROSEGREGATION WITH SOLIDIFICATION COLUMNAR. Journal of International Scientific Publications: Materials, Methods & Technologies 14, 1-8 (2020). https://www.scientific-publications.net/en/article/1002042/
Back to the contents of the volume
© 2025 The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This permission does not cover any third party copyrighted material which may appear in the work requested.
Disclaimer: The Publisher and/or the editor(s) are not responsible for the statements, opinions, and data contained in any published works. These are solely the views of the individual author(s) and contributor(s). The Publisher and/or the editor(s) disclaim any liability for injury to individuals or property arising from the ideas, methods, instructions, or products mentioned in the content.