International Scientific Publications
© 2007-2025 Science Events Ltd
Warunki użytkowania  ·  Polityka prywatności
Language English French Polish Romanian Bulgarian
Conference room
Materials, Methods & Technologies 2025, 27th International Conference
14-17 August, Burgas, Bulgaria
Call for Papers

Materials, Methods & Technologies, Volume 15, 2021

PARALLELIZATION STRATEGIES ANALYSIS FOR SUPERVISED LEARNING
Snezhina Yanakieva
Strony: 293-300
Opublikowano: 23 Sep 2021
Wyświetlenia: 824
Pobrania: 71
Streszczenie: The algorithms for supervised learning in artificial neural networks (ANN) require time and high computational power. As these algorithms gain popularity in a variety of domains, it is critical for them to run fast. Following a brief survey of the different dimensions of parallelism in ANN this paper analyses the performance comparison between different parallelization techniques to show the advantages and disadvantages of these strategies.
Słowa kluczowe: parallel neural network, multilayer perceptron, back-propagation, bulk synchronous parallelism, computer cluster
Cytowanie artykułu: Snezhina Yanakieva. PARALLELIZATION STRATEGIES ANALYSIS FOR SUPERVISED LEARNING. Journal of International Scientific Publications: Materials, Methods & Technologies 15, 293-300 (2021). https://www.scientific-publications.net/en/article/1002220/
Powrót do spisu treści tomu

Submit Feedback

We value your input! Use this form to report any concerns or provide feedback on our published articles. All submissions will be kept confidential.

Korzystając z tej strony, zgadzasz się z naszą Polityką Prywatności i Warunkami Użytkowania. Używamy plików cookie, w tym do analizy, personalizacji i reklam.